Ad
related to: moving shocks in gas
Search results
Results from the WOW.Com Content Network
The speed of the shock wave relative to the gas is W, making the total velocity equal to u 1 + W. Next, suppose a reference frame is then fixed to the shock so it appears stationary as the gas in regions 1 and 2 move with a velocity relative to it. Redefining region 1 as x and region 2 as y leads to the following shock-relative velocities:
For example, a blunt object entering into the atmosphere faces a shock that comes through the medium of a non-moving gas. The fundamental problem that comes through moving normal shockwaves is the moment of a normal shockwave through motionless gas. The viewpoint of the moving shockwaves characterizes it as a moving or non-moving shock wave.
The speed of the shock is a function of the original pressure ratio between the two bodies of gas. Moving shocks are usually generated by the interaction of two bodies of gas at different pressure, with a shock wave propagating into the lower pressure gas and an expansion wave propagating into the higher pressure gas.
A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...
Shock is formed due to coalescence of various small pressure pulses. Sound waves are pressure waves and it is at the speed of the sound wave the disturbances are communicated in the medium. When an object is moving in a flow field the object sends out disturbances which propagate at the speed of sound and adjusts the remaining flow field ...
The mathematical similarities between the expressions for shear viscocity, thermal conductivity and diffusion coefficient of the ideal (dilute) gas is not a coincidence; It is a direct result of the Onsager reciprocal relations (i.e. the detailed balance of the reversible dynamics of the particles), when applied to the convection (matter flow ...
An inlet cone, as part of an Oswatitsch-type inlet used on a supersonic aircraft or missile, is the 3D-surface on which supersonic ram compression for a gas turbine engine or ramjet combustor takes place through oblique shock waves. Slowing the air to low supersonic speeds using a cone minimizes loss in total pressure (increases pressure recovery).
For a calorically perfect gas such as an ideal gas, the enthalpy is directly proportional to the temperature, and this leads to the concept of the total (or stagnation) temperature. When shock waves are present, in a reference frame in which the shock is stationary and the flow is steady, many of the parameters in the Bernoulli equation suffer ...
Ad
related to: moving shocks in gas