enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  3. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]

  4. François Chollet - Wikipedia

    en.wikipedia.org/wiki/François_Chollet

    Chollet is the creator of the Keras deep-learning library, released in 2015. His research focuses on computer vision, the application of machine learning to formal reasoning, abstraction, [2] and how to achieve greater generality in artificial intelligence. [3]

  5. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Keras: François Chollet 2015 MIT license: Yes Linux, macOS, Windows: Python: Python, R: Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++ ...

  6. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  7. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    In a recent research paper, Dr. Yukie Nagai suggested a new architecture in predictive learning to predict sensorimotor signals based on a two-module approach: a sensorimotor system which interacts with the environment and a predictor which simulates the sensorimotor system in the brain.

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Step function – Linear combination of indicator functions of real intervals; Sign function – Mathematical function returning -1, 0 or 1; Heaviside step function – Indicator function of positive numbers

  9. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    The formula for factoring in the momentum is more complex than for decay but is most often built in with deep learning libraries such as Keras. Time-based learning schedules alter the learning rate depending on the learning rate of the previous time iteration. Factoring in the decay the mathematical formula for the learning rate is: