Search results
Results from the WOW.Com Content Network
If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).
If one is only interested in the weak field limit of the theory, the dynamics of matter can be computed using special relativity methods and/or Newtonian laws of gravity and then the resulting stress–energy tensor can be plugged into the Einstein field equations. But if the exact solution is required or a solution describing strong fields ...
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
This category lists exact solutions to the Einstein field equation, an equation used in general relativity to determine the curvature of spacetime. Note that the identification of solutions to this equation can be very difficult. Identified solutions are quite noteworthy within physics research.
In general relativity, a scalar field solution is an exact solution of the Einstein field equation in which the gravitational field is due entirely to the field energy and momentum of a scalar field. Such a field may or may not be massless , and it may be taken to have minimal curvature coupling , or some other choice, such as conformal coupling .
The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...
In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation , this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present.
The Taub–NUT metric (/ t ɔː b n ʌ t /, [1] /-ˌ ɛ n. j uː ˈ t iː /) is an exact solution to Einstein's equations. It may be considered a first attempt in finding the metric of a spinning black hole. It is sometimes also used in homogeneous but anisotropic cosmological models formulated in the framework of general relativity. [citation ...