Search results
Results from the WOW.Com Content Network
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U
The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome , which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA ...
A diagram of DNA base pairing, demonstrating the basis for Chargaff's rules. Chargaff's rules (given by Erwin Chargaff) state that in the DNA of any species and any organism, the amount of guanine should be equal to the amount of cytosine and the amount of adenine should be equal to the amount of thymine.
The relationship between the nucleotide sequences of genes and the amino-acid sequences of proteins is determined by the rules of translation, known collectively as the genetic code. The genetic code consists of three-letter 'words' called codons formed from a sequence of three nucleotides (e.g. ACT, CAG, TTT).
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
An open reading frame (ORF) is a reading frame that has the potential to be transcribed into RNA and translated into protein. It requires a continuous sequence of DNA which may include a start codon, through a subsequent region which has a length that is a multiple of 3 nucleotides, to a stop codon in the same reading frame.
Only one of the two DNA strands serves as a template for transcription. The antisense strand of DNA is read by RNA polymerase from the 3' end to the 5' end during transcription (3' → 5'). The complementary RNA is created in the opposite direction, in the 5' → 3' direction, matching the sequence of the sense strand except switching uracil ...