Search results
Results from the WOW.Com Content Network
Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).
The quantity is called the relative redundancy and gives the maximum possible data compression ratio, when expressed as the percentage by which a file size can be decreased. (When expressed as a ratio of original file size to compressed file size, the quantity R : r {\displaystyle R:r} gives the maximum compression ratio that can be achieved.)
It includes the Zero Redundancy Optimizer (ZeRO) for training models with 1 trillion or more parameters. [4] Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5]
Neural networks are typically trained through empirical risk minimization.This method is based on the idea of optimizing the network's parameters to minimize the difference, or empirical risk, between the predicted output and the actual target values in a given dataset. [4]
Machine learning can be considered a subfield of computer science and statistics. It has strong ties to artificial intelligence and optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).
In a Bayesian network, the Markov boundary of node A includes its parents, children and the other parents of all of its children.. In statistics and machine learning, when one wants to infer a random variable with a set of variables, usually a subset is enough, and other variables are useless.