Search results
Results from the WOW.Com Content Network
The points P 1, P 2, and P 3 (in blue) are collinear and belong to the graph of x 3 + 3 / 2 x 2 − 5 / 2 x + 5 / 4 . The points T 1, T 2, and T 3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too.
For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.
The cardinality of the domain of a surjective function is greater than or equal to the cardinality of its codomain: If f : X → Y is a surjective function, then X has at least as many elements as Y, in the sense of cardinal numbers. (The proof appeals to the axiom of choice to show that a function g : Y → X satisfying f(g(y)) = y for all y ...
The 1st equal areas cubic is the locus of a point X such that area of the cevian triangle of X equals the area of the cevian triangle of X*. Also, this cubic is the locus of X for which X* is on the line S*X, where S is the Steiner point. (S = X(99) in the Encyclopedia of Triangle Centers).
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
cubic graph special points: Image title: Graph showing the relationship between the roots, turning or stationary points and inflection point of a cubic polynomial and its first and second derivatives by CMG Lee. The vertical scale is compressed 1:50 relative to the horizontal scale for ease of viewing.
Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.
An ordered pair of vertices, such as an edge in a directed graph. An arrow (x, y) has a tail x, a head y, and a direction from x to y; y is said to be the direct successor to x and x the direct predecessor to y. The arrow (y, x) is the inverted arrow of the arrow (x, y). articulation point A vertex in a connected graph whose removal would ...