Ad
related to: nernst hydrogen electrode
Search results
Results from the WOW.Com Content Network
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
The most common types of reference electrodes used in analytical chemistry include the standard hydrogen electrode, the saturated calomel electrode, and the Ag/AgCl electrode. [3] The standard hydrogen electrode (SHE) is the primary reference electrode that has a potential of 0 volts at all temperatures and a pressure of 1 atm. The figure on ...
Such tabulations are referenced to the standard hydrogen electrode (SHE). The standard hydrogen electrode undergoes the reaction 2 H + (aq) + 2 e − → H 2. which is shown as a reduction but, in fact, the SHE can act as either the anode or the cathode, depending on the relative oxidation/reduction potential of the other electrode/electrolyte ...
The Nernst equation below shows the dependence of the potential of the silver-silver(I) chloride electrode on the activity or effective concentration of chloride-ions: = The standard electrode potential E 0 against standard hydrogen electrode (SHE) is 0.230 V ± 10 mV.
Both the oxidation and reduction steps are pH dependent. Figure 1 shows the standard potentials at pH 0 (strongly acidic) as referenced to the normal hydrogen electrode (NHE). 2 half reactions (at pH = 0) Oxidation 2H 2 O → 4H + + 4e − + O 2 E° = +1.23 V vs. NHE Reduction 4H + + 4e − → 2H 2 E° = 0.00 V vs. NHE
Ad
related to: nernst hydrogen electrode