enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  3. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    Stan is a probabilistic programming language for statistical inference written in C++ ArviZ a Python library for exploratory analysis of Bayesian models Bambi is a high-level Bayesian model-building interface based on PyMC

  4. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().

  5. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  6. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Engine for Likelihood-Free Inference. ELFI is a statistical software package written in Python for Approximate Bayesian Computation (ABC), also known e.g. as likelihood-free inference, simulator-based inference, approximative Bayesian inference etc. [83] ABCpy: Python package for ABC and other likelihood-free inference schemes.

  7. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    In numerous publications on Bayesian experimental design, it is (often implicitly) assumed that all posterior probabilities will be approximately normal. This allows for the expected utility to be calculated using linear theory, averaging over the space of model parameters. [2]

  8. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    Bayesian inference; Bayesian probability; Bayes' theorem; Bernstein–von Mises theorem; Coherence; Cox's theorem; Cromwell's rule; Likelihood principle; Principle of indifference; Principle of maximum entropy; Model building; Conjugate prior; Linear regression; Empirical Bayes; Hierarchical model; Posterior approximation; Markov chain Monte ...

  9. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.