Search results
Results from the WOW.Com Content Network
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
In computer science, locality of reference, also known as the principle of locality, [1] is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. [2] There are two basic types of reference locality – temporal and spatial locality. Temporal locality refers to the reuse of specific data ...
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
The local TTU value is calculated with a locally-defined function. When the local TTU value is calculated, content replacement is performed on a subset of the total content of the cache node. TLRU ensures that less-popular and short-lived content is replaced with incoming content.
[2] The following are the requirements for cache coherence: [3] Write Propagation Changes to the data in any cache must be propagated to other copies (of that cache line) in the peer caches. Transaction Serialization Reads/Writes to a single memory location must be seen by all processors in the same order.
In computer programming, a reference is a value that enables a program to indirectly access a particular datum, such as a variable's value or a record, in the computer's memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference. A reference is distinct from ...
In virtual memory systems, thrashing may be caused by programs or workloads that present insufficient locality of reference: if the working set of a program or a workload cannot be effectively held within physical memory, then constant data swapping, i.e., thrashing, may occur. The term was first used during the tape operating system days to ...
It uses A variant of ARC in its Caching Algorithm. [5] OpenZFS supports using ARC and L2ARC in a multi-level cache as read caches. In OpenZFS, disk reads often hit the first level disk cache in RAM using ARC. If a SSD is set up to store the second level disk cache, it is called an L2ARC.