Search results
Results from the WOW.Com Content Network
Then the genetic algorithm is used to generate all the possible face regions which include the eyebrows, the iris, the nostril and the mouth corners. [3] Each possible face candidate is normalized to reduce both the lighting effect, which is caused by uneven illumination; and the shirring effect, which is due to head movement.
Face hallucination algorithms that are applied to images prior to those images being submitted to the facial recognition system use example-based machine learning with pixel substitution or nearest neighbour distribution indexes that may also incorporate demographic and age related facial characteristics. Use of face hallucination techniques ...
For a discussion on the vulnerabilities of Facenet-based face recognition algorithms in applications to the Deepfake videos: Pavel Korshunov; Sébastien Marcel (2022). "The Threat of Deepfakes to Computer and Human Visions" in: Handbook of Digital Face Manipulation and Detection From DeepFakes to Morphing Attacks (PDF). Springer. pp. 97– 114.
The technique used in creating eigenfaces and using them for recognition is also used outside of face recognition: handwriting recognition, lip reading, voice recognition, sign language/hand gestures interpretation and medical imaging analysis. Therefore, some do not use the term eigenface, but prefer to use 'eigenimage'.
The Haar features used in the Viola-Jones algorithm are a subset of the more general Haar basis functions, which have been used previously in the realm of image-based object detection. [ 4 ] While crude compared to alternatives such as steerable filters , Haar features are sufficiently complex to match features of typical human faces.
Celebrity recognition in images [3] [4]; Facial attribute detection in images, including gender, age range, emotions (e.g. happy, calm, disgusted), whether the face has a beard or mustache, whether the face has eyeglasses or sunglasses, whether the eyes are open, whether the mouth is open, whether the person is smiling, and the location of several markers such as the pupils and jaw line.
This avoids such pitfalls of 2D face recognition algorithms as change in lighting, different facial expressions, make-up and head orientation. Another approach is to use the 3D model to improve accuracy of traditional image based recognition by transforming the head into a known view.
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.