Search results
Results from the WOW.Com Content Network
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.. In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits.
For a one-port network, the Z-matrix reduces to a single element, being the ordinary impedance measured between the two terminals. The Z-parameters are also known as the open circuit parameters because they are measured or calculated by applying current to one port and determining the resulting voltages at all the ports while the undriven ports ...
Pages in category "Two-port networks" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. ...
For the purposes of analysis, an electrical transmission line can be modelled as a two-port network (also called a quadripole), as follows: In the simplest case, the network is assumed to be linear (i.e. the complex voltage across either port is proportional to the complex current flowing into it when there are no reflections), and the two ...
Full hybrid-pi model. The full model introduces the virtual terminal, B′, so that the base spreading resistance, r bb, (the bulk resistance between the base contact and the active region of the base under the emitter) and r b′e (representing the base current required to make up for recombination of minority carriers in the base region) can be represented separately.
A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. [1]
A few procedures can be followed for realizing passive two-ports with transmission zeroes. As long as transmission zeros are located at the origin or infinity, all that is needed is the application of Cauer 1 or 2 steps [clarification needed] to remove poles [clarification needed] from either the admittance or the impedance at the origin or infinity.
Start with a two-port network, N, with a plane of symmetry between the two ports. Next cut N through its plane of symmetry to form two new identical two-ports, 1 / 2 N. Connect two identical voltage generators to the two ports of N. It is clear from the symmetry that no current is going to flow through any branch passing through the ...