Search results
Results from the WOW.Com Content Network
Action potential propagation in myelinated neurons is faster than in unmyelinated neurons because of saltatory conduction. The main purpose of myelin is to increase the speed at which electrical impulses (known as action potentials) propagate along the myelinated fiber.
Transmission electron micrograph of a myelinated axon Neuron with oligodendrocyte and myelin sheath showing cytoskeletal structures at a node of Ranvier. The basic helix–loop–helix transcription factor OLIG1 plays an integral role in the process of oligodendrocyte myelinogenesis by regulating expression of myelin-related genes. OLIG1 is ...
The impulse speed of a myelinated axon increases linearly with the axon diameter, whereas the impulse speed of unmyelinated cells increases only with the square root of the diameter. The insulation must be proportional to the diameter of the fibre inside.
Since an axon can be unmyelinated or myelinated, the action potential has two methods to travel down the axon. These methods are referred to as continuous conduction for unmyelinated axons, and saltatory conduction for myelinated axons. Saltatory conduction is defined as an action potential moving in discrete jumps down a myelinated axon.
Neuroregeneration is the regrowth or repair of nervous tissues, cells or cell products. Neuroregenerative mechanisms may include generation of new neurons, glia, axons, myelin, or synapses.
White matter refers to areas of the central nervous system (CNS) that are mainly made up of myelinated axons, also called tracts. [1] Long thought to be passive tissue, white matter affects learning and brain functions, modulating the distribution of action potentials, acting as a relay and coordinating communication between different brain ...
A neuron, neurone, [1] or nerve cell is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system.They are located in the brain and spinal cord and help to receive and conduct impulses.
Group A are heavily myelinated, group B are moderately myelinated, and group C are unmyelinated. [1] [2] The other classification is a sensory grouping that uses the terms type Ia and type Ib, type II, type III, and type IV, sensory fibers. [1]