enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    Manhattan distance, also known as Taxicab geometry, is a commonly used similarity measure in clustering techniques that work with continuous data. It is a measure of the distance between two data points in a high-dimensional space, calculated as the sum of the absolute differences between the corresponding coordinates of the two points | | + | |.

  3. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    A common function in data mining is applying cluster analysis on a given set of data to group data based on how similar or more similar they are when compared to other groups. Distance matrices became heavily dependent and utilized in cluster analysis since similarity can be measured with a distance metric. Thus, distance matrix became the ...

  4. Normalized compression distance - Wikipedia

    en.wikipedia.org/.../Normalized_compression_distance

    The normalized compression distance has been used to fully automatically reconstruct language and phylogenetic trees. [2] [3] It can also be used for new applications of general clustering and classification of natural data in arbitrary domains, [3] for clustering of heterogeneous data, [3] and for anomaly detection across domains. [5]

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    The inter-cluster distance d(i,j) between two clusters may be any number of distance measures, such as the distance between the centroids of the clusters. Similarly, the intra-cluster distance d '(k) may be measured in a variety of ways, such as the maximal distance between any pair of elements in cluster k. Since internal criterion seek ...

  6. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.

  7. Jaccard index - Wikipedia

    en.wikipedia.org/wiki/Jaccard_index

    Jaccard distance is commonly used to calculate an n × n matrix for clustering and multidimensional scaling of n sample sets. This distance is a metric on the collection of all finite sets. [8] [9] [10] There is also a version of the Jaccard distance for measures, including probability measures.

  8. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    For example, when dealing with mixed-type data that contain numerical as well as categorical descriptors, Gower's distance is a common alternative. [ citation needed ] In other words, MDS attempts to find a mapping from the M {\displaystyle M} objects into R N {\displaystyle \mathbb {R} ^{N}} such that distances are preserved.

  9. Canberra distance - Wikipedia

    en.wikipedia.org/wiki/Canberra_distance

    The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966 [1] and refined in 1967 [2] by Godfrey N. Lance and William T. Williams. It is a weighted version of L ₁ (Manhattan) distance . [ 3 ]