Search results
Results from the WOW.Com Content Network
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base. Euclid proved that the area of a triangle is ...
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
The area of a triangle is its half of the product of the base times the height (length of the altitude). For a triangle with opposite sides ,,, if the three altitudes of the triangle are called ,,, the area is: = = =. Given a fixed base side and a fixed area for a triangle, the locus of apex points is a straight line parallel to the base.
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length , which has area 1. There are several ways to calculate the area of an arbitrary triangle.
If two triangles have two sides of the one equal to two sides of the other, each to each, and the angles included by those sides equal, then the triangles are congruent (side-angle-side). The area of a triangle is half the area of any parallelogram on the same base and having the same altitude.
As with any triangle, the area is equal to one half the base multiplied by the corresponding height. In a right triangle, if one leg is taken as the base then the other is height, so the area of a right triangle is one half the product of the two legs. As a formula the area is =
The two equal sides are called the legs and the third side is called the base of the triangle. The other dimensions of the triangle, such as its height, area, and perimeter, can be calculated by simple formulas from the lengths of the legs and base. Every isosceles triangle has an axis of symmetry along the perpendicular bisector of its
The formula of the area of an equilateral triangle can be obtained by substituting the altitude formula. [7] Another way to prove the area of an equilateral triangle is by using the trigonometric function. The area of a triangle is formulated as the half product of base and height and the sine of an angle. Because all of the angles of an ...