Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects ... This article summarizes equations in the theory of nuclear physics and particle physics. Definitions
In nuclear physics, ab initio methods seek to describe the atomic nucleus from the bottom up by solving the non-relativistic Schrödinger equation for all constituent nucleons and the forces between them. This is done either exactly for very light nuclei (up to four nucleons) or by employing certain well-controlled approximations for heavier ...
PDF version of the Basic Physics of Nuclear Medicine Wikibook. Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
In physics and chemistry, specifically in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and electron spin resonance (ESR), the Bloch equations are a set of macroscopic equations that are used to calculate the nuclear magnetization M = (M x, M y, M z) as a function of time when relaxation times T 1 and T 2 are present.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
For an axially symmetric shape with the axis of symmetry being the z axis, the Hamiltonian is = + (+) ( ). Here m is the mass of the nucleon, N is the total number of harmonic oscillator quanta in the spherical basis, is the orbital angular momentum operator, is its square (with eigenvalues (+)), = (/) (+) is the average value of over the N shell, and s is the intrinsic spin.
Nuclear reactions may be shown in a form similar to chemical equations, for which invariant mass must balance for each side of the equation, and in which transformations of particles must follow certain conservation laws, such as conservation of charge and baryon number (total atomic mass number). An example of this notation follows: