Search results
Results from the WOW.Com Content Network
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2. The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized.
The water gas shift reaction is the reaction between carbon monoxide and steam to form hydrogen and carbon dioxide: CO + H 2 O ⇌ CO 2 + H 2. This reaction was discovered by Felice Fontana and nowadays is adopted in a wide range of industrial applications, such as in the production process of ammonia, hydrocarbons, methanol, hydrogen and other chemicals.
The Bosch reaction is a catalytic chemical reaction between carbon dioxide (CO 2) and hydrogen (H 2) that produces elemental carbon (C,graphite), water, and a 10% return of invested heat. CO 2 is usually reduced by H 2 to carbon in presence of a catalyst (e.g. iron (Fe)) and requires a temperature level of 530–730 °C (986–1,346 °F).
In the breakdown of a compound into its constituent parts, the generalized reaction for chemical decomposition is: AB → A + B (AB represents the reactant that begins the reaction, and A and B represent the products of the reaction) An example is the electrolysis of water to the gases hydrogen and oxygen: 2 H 2 O(l) → 2 H 2 (g) + O 2 (g)
The Boudouard reaction, named after Octave Leopold Boudouard, is the redox reaction of a chemical equilibrium mixture of carbon monoxide and carbon dioxide at a given temperature. It is the disproportionation of carbon monoxide into carbon dioxide and graphite or its reverse: [ 1 ]
The chemical equations below show the reactions that CO 2 undergoes after it enters the ocean and transforms into its aqueous form. Sea surface dissolved inorganic carbon First, carbon dioxide reacts with water to form carbonic acid. concentration in the 1990s (from the GLODAP climatology )
The reaction is endothermic, so the fuel must be continually re-heated to maintain the reaction. To do this, an air stream, which alternates with the vapor stream, is introduced to combust some of the carbon: O 2 + C → CO 2 (ΔH = -393 kJ/mol) Theoretically, to make 6 L of water gas, 5 L of air is required.
The ammonia from reaction (III) is recycled back to the initial brine solution of reaction (I). The sodium bicarbonate (NaHCO 3) precipitate from reaction (I) is then converted to the final product, sodium carbonate (washing soda: Na 2 CO 3), by calcination (160–230 °C), producing water and carbon dioxide as byproducts: