Search results
Results from the WOW.Com Content Network
For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one. The percentage overshoot (PO) is related to damping ratio (ζ) by:
In the case of the unit step, the overshoot is just the maximum value of the step response minus one. Also see the definition of overshoot in an electronics context . For second-order systems, the percentage overshoot is a function of the damping ratio ζ and is given by [ 3 ]
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Here, the damping ratio is always equal to one. There should be no oscillation about the steady-state value in the ideal case. Overdamped An overdamped response is the response that does not oscillate about the steady-state value but takes longer to reach steady-state than the critically damped case. Here damping ratio is greater than one.
The settling time for a second order, underdamped system responding to a step response can be approximated if the damping ratio by = () A general form is T s = − ln ( tolerance fraction × 1 − ζ 2 ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln({\text{tolerance fraction}}\times {\sqrt {1-\zeta ^{2}}})}{{\text ...
As an example of this formula, if Δ = 1/e 4 = 1.8 %, the settling time condition is t S = 8 τ 2. In general, control of overshoot sets the time constant ratio, and settling time t S sets τ 2. [5] [6] [7]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
= is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be: