Search results
Results from the WOW.Com Content Network
Acid–base-catalysed hydrolyses are very common; one example is the hydrolysis of amides or esters. Their hydrolysis occurs when the nucleophile (a nucleus-seeking agent, e.g., water or hydroxyl ion) attacks the carbon of the carbonyl group of the ester or amide. In an aqueous base, hydroxyl ions are better nucleophiles than polar molecules ...
Amides do not readily participate in nucleophilic substitution reactions. Amides are stable to water, and are roughly 100 times more stable towards hydrolysis than esters. [citation needed] Amides can, however, be hydrolyzed to carboxylic acids in the presence of
The two major resonance forms of an amide. Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond ...
An ester of a carboxylic acid. R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
The final step in the reduction of carboxylic acids and esters is hydrolysis of the aluminium alcoxide. [8] Esters (and amides) are more easily reduced than the parent carboxylic acids. Their reduction affords alcohols and amines, respectively. [9] The idealized equation for the reduction of an ester by lithium aluminium hydride is:
Alkaline hydrolysis of esters is also known as saponification. A base such as sodium hydroxide is required in stochiometric amounts. Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion.
Thus, in the case of ester and amide hydrolysis under basic conditions, alkoxides and amides are commonly proposed as leaving groups. For the same reason, E1cb reactions involving hydroxide as a leaving group are not uncommon (e.g., in the aldol condensation).
Active esters are often used in peptide synthesis, e.g., N-hydroxysuccinimide, hydroxybenzotriazole. [1] Active esters of acrylic acid are precursors to polymers with reactive side chains. [4] The concept of active esters extends to esters of phosphoric and sulfuric acids. One such case is dimethylsulfate, a strong methylating agent.