Search results
Results from the WOW.Com Content Network
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
The NBOs for a resonance structure formula can then be, subsequently, calculated from the CHOOSE option. Operationally, there are three ways in which alternative resonance structures may be generated: (1) from the LEWIS option, considering the Wiberg bond indices; (2) from the delocalization list; (3) specified by the user. [1]
Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...
In resonance structures, major and minor contributing structures may exist. For amides, for example, NBO calculations show that the structure with a carbonyl double bond is the dominant Lewis structure. However, in NBO calculations, "covalent-ionic resonance" is not needed due to the inclusion of bond-polarity effects in the resonance ...
Expressing resonance when drawing Lewis structures may be done either by drawing each of the possible resonance forms and placing double-headed arrows between them or by using dashed lines to represent the partial bonds (although the latter is a good representation of the resonance hybrid which is not, formally speaking, a Lewis structure ...
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound. It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [ 1 ]
They found that closed-shell compounds were aromatic when they had 2(n + 1) 2 π-electrons, for instance the buckminsterfullerene species C 60 10+. [ 15 ] [ 16 ] In 2011, Jordi Poater and Miquel Solà expanded the rule to open-shell spherical compounds, finding they were aromatic when they had 2 n 2 + 2 n + 1 π- electrons , with spin S = (n ...
However, VB calculations using a double-zeta D95 basis set indicate that the predominant resonance structures are the structure with all three lone pairs on the nitrogen (labeled 1 below) and the six resonance structures with one double bond between boron and nitrogen (labeled 2 below). The relative weights of the two structures are 0.17 and 0. ...