Search results
Results from the WOW.Com Content Network
The topological polyhedral net can be cut from two rows of a square tiling (with vertex configuration 4.4.4.4): a band of n squares, each attached to a crossed rectangle. An n -gonal toroidal prism has 2 n vertices, 2 n faces: n squares and n crossed rectangles, and 4 n edges.
a hexahedron with three pairs of parallel faces, a polyhedron with six faces , each of which is a parallelogram, and; a prism of which the base is a parallelogram. The rectangular cuboid (six rectangular faces), cube (six square faces), and the rhombohedron (six rhombus faces) are all special cases of parallelepiped.
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] =. The altitude h satisfies [3] = + +. The area of the base is given by [4] =. The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π /2 steradians, one eighth of the surface area of a unit sphere.
A hexahedron with three pairs of parallel faces; A prism of which the base is a parallelogram; Rhombohedron: A parallelepiped where all edges are the same length; A cube, except that its faces are not squares but rhombi; Cuboid: A convex polyhedron bounded by six quadrilateral faces, whose polyhedral graph is the same as that of a cube [4]
For a cube the lateral surface area would be the area of the four sides. If the edge of the cube has length a, the area of one square face A face = a ⋅ a = a 2. Thus the lateral surface of a cube will be the area of four faces: 4a 2. More generally, the lateral surface area of a prism is the sum of the areas of the sides of the prism. [1]
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a ...
If A 1, A 2, A 3 and A 4 denote the area of each faces, the value of r is given by r = 3 V A 1 + A 2 + A 3 + A 4 {\displaystyle r={\frac {3V}{A_{1}+A_{2}+A_{3}+A_{4}}}} . This formula is obtained from dividing the tetrahedron into four tetrahedra whose points are the three points of one of the original faces and the incenter.