Search results
Results from the WOW.Com Content Network
In order to convert a rational number represented as a fraction into decimal form, one may use long division. For example, consider the rational number 5 / 74 : 0.0 675 74 ) 5.00000 4.44 560 518 420 370 500 etc. Observe that at each step we have a remainder; the successive remainders displayed above are 56, 42, 50.
Conversion of (357) 10 to binary notation results in (101100101) To convert from a base-10 integer to its base-2 (binary) equivalent, the number is divided by two. The remainder is the least-significant bit. The quotient is again divided by two; its remainder becomes the next least significant bit. This process repeats until a quotient of one ...
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
Calculate the remainders left by each product on dividing by 7. Add these remainders. The remainder of the sum when divided by 7 is the remainder of the given number when divided by 7. For example: The number 194,536 leaves a remainder of 6 on dividing by 7. The number 510,517,813 leaves a remainder of 1 on dividing by 7.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
The conversion to a base of an integer n represented in base can be done by a succession of Euclidean divisions by : the right-most digit in base is the remainder of the division of n by ; the second right-most digit is the remainder of the division of the quotient by , and so on. The left-most digit is the last quotient.
Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to 3 + 1 / 3 or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...