enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    C 4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack. [1] C 4 fixation is an addition to the ancestral and more common C 3 carbon fixation.

  3. 3-Hydroxypropionate/4-hydroxybutyrate cycle - Wikipedia

    en.wikipedia.org/wiki/3-Hydroxypropionate/4...

    The 3-HP/4-HB cycle is very effective for autotrophic carbon fixation under harsh circumstances because of the cyclical regeneration of acetyl-CoA. [ 5 ] Adaptation to extreme environments: The 3-HP/4-HB cycle-dependent species are usually found in settings where more traditional carbon fixation routes, including the Calvin cycle, would not ...

  4. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide) to organic compounds. These organic compounds are then used to store energy and as structures for other biomolecules .

  5. List of C4 plants - Wikipedia

    en.wikipedia.org/wiki/List_of_C4_plants

    Maize (Zea mays, Poaceae) is the most widely cultivated C 4 plant.[1]In botany, C 4 carbon fixation is one of three known methods of photosynthesis used by plants. C 4 plants increase their photosynthetic efficiency by reducing or suppressing photorespiration, which mainly occurs under low atmospheric CO 2 concentration, high light, high temperature, drought, and salinity.

  6. Phosphoenolpyruvate carboxylase - Wikipedia

    en.wikipedia.org/wiki/Phosphoenolpyruvate...

    Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; EC 4.1.1.31, PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO 3 −) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate: [1]

  7. C3 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C3_carbon_fixation

    Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:

  8. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]

  9. Glyoxylate cycle - Wikipedia

    en.wikipedia.org/wiki/Glyoxylate_cycle

    This bypasses the decarboxylation steps that take place in the citric acid cycle (TCA cycle), allowing simple carbon compounds to be used in the later synthesis of macromolecules, including glucose. [2] Glyoxylate is subsequently combined with acetyl-CoA to produce malate, catalyzed by malate synthase. [1]