enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    These equations can be rewritten in terms of charge and current using the relationships C = ⁠ Q / V ⁠ and V = IR (see Ohm's law). Thus, the voltage across the capacitor tends towards V as time passes, while the voltage across the resistor tends towards 0, as shown in the figures. This is in keeping with the intuitive point that the ...

  3. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The capacitors each store instantaneous charge build-up equal to that of every other capacitor in the series. The total voltage difference from end to end is apportioned to each capacitor according to the inverse of its capacitance. The entire series acts as a capacitor smaller than any of its components.

  4. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    A series RLC network (in order): a resistor, an inductor, and a capacitor Tuned circuit of a shortwave radio transmitter.This circuit does not have a resistor like the above, but all tuned circuits have some resistance, causing them to function as an RLC circuit.

  5. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Combining the equation for capacitance with the above equation for the energy stored in a capacitor, for a flat-plate capacitor the energy stored is: = =. where is the energy, in joules; is the capacitance, in farads; and is the voltage, in volts.

  6. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Series circuits were formerly used for lighting in electric multiple units trains. For example, if the supply voltage was 600 volts there might be eight 70-volt bulbs in series (total 560 volts) plus a resistor to drop the remaining 40 volts. Series circuits for train lighting were superseded, first by motor-generators, then by solid state devices.

  7. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  8. Displacement current - Wikipedia

    en.wikipedia.org/wiki/Displacement_current

    In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual

  9. Double-layer capacitance - Wikipedia

    en.wikipedia.org/wiki/Double-layer_capacitance

    Because an electrochemical capacitor is composed out of two electrodes, electric charge in the Helmholtz layer at one electrode is mirrored (with opposite polarity) in the second Helmholtz layer at the second electrode. Therefore, the total capacitance value of a double-layer capacitor is the result of two capacitors connected in series.