Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any unital ring, and therefore can be taken to be, for example, a complex number, including negative integers, or a polynomial with complex coefficients, or any complex-valued function.
A derivation of Faulhaber's formula using the umbral form is available in The Book of Numbers by John Horton Conway and Richard K. Guy. [17] Classically, this umbral form was considered as a notational convenience. In the modern umbral calculus, on the other hand, this is given a formal mathematical underpinning.
For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
This page was last edited on 23 November 2021, at 17:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.