Search results
Results from the WOW.Com Content Network
In contrast, the equilibrium contact angle described by the Young-Laplace equation is measured from a static state. Static measurements yield values in-between the advancing and receding contact angle depending on deposition parameters (e.g. velocity, angle, and drop size) and drop history (e.g. evaporation from time of deposition).
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The Young–Laplace equation is the force up description of capillary pressure, and the most commonly used variation of the capillary pressure equation: [2] [1] = where: is the interfacial tension is the effective radius of the interface is the wetting angle of the liquid on the surface of the capillary
The contact angle is defined as the angle formed by the intersection of the liquid-solid interface and the liquid–vapour interface. [2] The size of the angle quantifies the wettability of liquid, i.e., the interaction between the liquid and solid surface. A contact angle of = can be considered, perfect wetting.
Figure 2: Wetting of different fluids: A shows a fluid with very little wetting, while C shows a fluid with more wetting. A has a large contact angle, and C has a small contact angle. The contact angle (θ), as seen in Figure 1, is the angle at which the liquid–vapor interface meets the solid–liquid interface. The contact angle is ...
When φ is the angle between the normal to the interface and positive z axis then φ is equal to 90°, 0°, -90° for nodoid. The Young-Laplace equation may be written in a form convenient for integration for axial symmetry :
This is also referred to as a low degree of wetting. A low contact angle indicates a high solid surface energy or chemical affinity, and a high or sometimes complete degree of wetting. For example, a contact angle of zero degrees will occur when the droplet has turned into a flat puddle; this is called complete wetting.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.