Search results
Results from the WOW.Com Content Network
[3] [48] It can perform as an 8-bit 8051, has 24-bit linear addressing, an 8-bit ALU, 8-bit instructions, 16-bit instructions, a limited set of 32-bit instructions, 16 8-bit registers, 16 16-bit registers (8 16-bit registers which do not share space with any 8-bit registers, and 8 16-bit registers which contain 2 8-bit registers per 16-bit ...
The Auxiliary Carry flag is set (to 1) if during an "add" operation there is a carry from the low nibble (lowest four bits) to the high nibble (upper four bits), or a borrow from the high nibble to the low nibble, in the low-order 8-bit portion, during a subtraction. Otherwise, if no such carry or borrow occurs, the flag is cleared or "reset ...
For x86 ALU size of 8 bits, an 8-bit two's complement interpretation, the addition operation 11111111 + 11111111 results in 111111110, Carry_Flag set, Sign_Flag set, and Overflow_Flag clear. If 11111111 represents two's complement signed integer −1 ( ADD al,-1 ), then the interpretation of the result is -2 because Overflow_Flag is clear, and ...
[1] [2] It is also known as the shift-and-add-3 algorithm, and can be implemented using a small number of gates in computer hardware, but at the expense of high latency. [ 3 ] Algorithm
The Small Device C Compiler (SDCC) is a free-software, partially retargetable [1] C compiler for 8-bit microcontrollers. It is distributed under the GNU General Public License. The package also contains an assembler, linker, simulator and debugger. SDCC is a popular open-source C compiler for microcontrollers compatible with Intel 8051/MCS-51 ...
An 8-bit register can store 2 8 different values. The range of integer values that can be stored in 8 bits depends on the integer representation used. With the two most common representations, the range is 0 through 255 (2 8 − 1) for representation as an binary number, and −128 (−1 × 2 7) through 127 (2 7 − 1) for representation as two's complement.
A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.
An assembly-language programmer or compiler writer had to be mindful of which operations were possible on each register: Most 8-bit operations could be performed only on the 8-bit accumulator (the A-register), while 16-bit operations could be performed only on the 16-bit pointer/accumulator (the HL-register pair), whereas simple operations ...