enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...

  3. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is

  4. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a step ), then any resulting oscillations in the output will decay at an exponential rate , and the output will tend ...

  5. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    where is a finite matrix, is asymptotically stable (in fact, exponentially stable) if all real parts of the eigenvalues of are negative. This condition is equivalent to the following one: [ 12 ] A T M + M A {\displaystyle A^{\textsf {T}}M+MA}

  6. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    Stability and natural response characteristics of a continuous-time LTI system (i.e., linear with matrices that are constant with respect to time) can be studied from the eigenvalues of the matrix . The stability of a time-invariant state-space model can be determined by looking at the system's transfer function in factored form.

  7. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...

  8. Backstepping - Wikipedia

    en.wikipedia.org/wiki/Backstepping

    These systems are built from subsystems that radiate out from an irreducible subsystem that can be stabilized using some other method. Because of this recursive structure, the designer can start the design process at the known-stable system and "back out" new controllers that progressively stabilize each outer subsystem. The process terminates ...

  9. Marginal stability - Wikipedia

    en.wikipedia.org/wiki/Marginal_stability

    In contrast, if all the poles have strictly negative real parts, the system is instead asymptotically stable. If the system is neither stable nor marginally stable, it is unstable. If the system is in state space representation, marginal stability can be analyzed by deriving the Jordan normal form: [2] if and only if the Jordan blocks ...