Search results
Results from the WOW.Com Content Network
Le Châtelier's principle (1884) predicts the behavior of an equilibrium system when changes to its reaction conditions occur. If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will ...
Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]
The second law of thermodynamics states that when an isolated body of material starts from an equilibrium state, in which portions of it are held at different states by more or less permeable or impermeable partitions, and a thermodynamic operation removes or makes the partitions more permeable, then it spontaneously reaches its own new state ...
In chemistry, Le Chatelier's principle (pronounced UK: / l ə ʃ æ ˈ t ɛ l j eɪ / or US: / ˈ ʃ ɑː t əl j eɪ /) [1] is a principle used to predict the effect of a change in conditions on chemical equilibrium. [2] Other names include Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium ...
The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which ...
These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by Ralph H. Fowler in the 1930s, long after the first, second, and third laws were widely
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
The second law of thermodynamics specifies that the equilibrium state that it moves to is in fact the one with the greatest entropy. Once we know the entropy as a function of the extensive variables of the system, we will be able to predict the final equilibrium state. (Callen 1985)