Search results
Results from the WOW.Com Content Network
The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. In differential calculus and differential geometry , an inflection point , point of inflection , flex , or inflection (rarely inflexion ) is a point on ...
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice- differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain . [ 1 ]
If it is positive then the graph has an upward concavity, and, if it is negative the graph has a downward concavity. If it is zero, then one has an inflection point or an undulation point. When the slope of the graph (that is the derivative of the function) is small, the signed curvature is well approximated by the second derivative.
In mathematics, concavification is the process of converting a non-concave function to a concave function. A related concept is convexification – converting a non-convex function to a convex function. It is especially important in economics and mathematical optimization. [1]
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2]