enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Phase space - Wikipedia

    en.wikipedia.org/wiki/Phase_space

    The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the phase space usually consists of all possible values of the position and momentum parameters.

  4. Bond graph - Wikipedia

    en.wikipedia.org/wiki/Bond_graph

    Parallel power can be simplified, by recalling the relationship between effort and flow for 0 and 1-junctions. To solve parallel power you will first want to write down all of the equations for the junctions. For the example provided, the equations can be seen below. (Please make note of the number bond the effort/flow variable represents).

  5. List of unsolved problems in chemistry - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    RNA folding problem: Is it possible to accurately predict the secondary, tertiary and quaternary structure of a polyribonucleic acid sequence based on its sequence and environment? Protein design : Is it possible to design highly active enzymes de novo for any desired reaction?

  6. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space, known as the state space of M. In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected ...

  7. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    There are many such state functions. Examples are internal energy, enthalpy, Helmholtz free energy, Gibbs free energy, thermodynamic temperature, and entropy. For a given body, of a given chemical constitution, when its thermodynamic state has been fully defined by its pressure and volume, then its temperature is uniquely determined.

  8. Distributed parameter system - Wikipedia

    en.wikipedia.org/wiki/Distributed_parameter_system

    The continuous-time case is similar to the discrete-time case but now one considers differential equations instead of difference equations: ˙ = + (), = + ().An added complication now however is that to include interesting physical examples such as partial differential equations and delay differential equations into this abstract framework, one is forced to consider unbounded operators.

  9. State function - Wikipedia

    en.wikipedia.org/wiki/State_function

    A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The ideal gas law is a good example ...