Search results
Results from the WOW.Com Content Network
In this case, an element x of the domain is represented by an interval of the x-axis, and the corresponding value of the function, f(x), is represented by a rectangle whose base is the interval corresponding to x and whose height is f(x) (possibly negative, in which case the bar extends below the x-axis).
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as ...
During the mid-20th century, some mathematicians adopted postfix notation, writing xf for f(x) and (xf)g for g(f(x)). [17] This can be more natural than prefix notation in many cases, such as in linear algebra when x is a row vector and f and g denote matrices and the composition is by matrix multiplication. The order is important because ...
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
The statement that quantity f(x) depending on x "can be made" arbitrarily large, corresponds to ∀y : ∃x : f(x) ≥ y. arbitrary A shorthand for the universal quantifier. An arbitrary choice is one which is made unrestrictedly, or alternatively, a statement holds of an arbitrary element of a set if it holds of any element of that set.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...