Search results
Results from the WOW.Com Content Network
Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.
In statistical graphics, the functional boxplot is an informative exploratory tool that has been proposed for visualizing functional data. [1] [2] Analogous to the classical boxplot, the descriptive statistics of a functional boxplot are: the envelope of the 50% central region, the median curve and the maximum non-outlying envelope.
To construct a contour boxplot, data ordering is the first step. In functional data analysis, each observation is a real function, therefore data ordering is different from the classical boxplot where scalar data are simply ordered from the smallest sample value to the largest. More generally, data depth, gives a center-outward ordering of data ...
If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.
Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.
If δ ≤ Rejection Region, the data point is not an outlier. The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region.
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
It is defined as a scaled median difference between the left and right half of a distribution. Its robustness makes it suitable for identifying outliers in adjusted boxplots. [2] [3] Ordinary box plots do not fare well with skew distributions, since they label the longer unsymmetrical tails as outliers. Using the medcouple, the whiskers of a ...