Search results
Results from the WOW.Com Content Network
A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f, then f is said to be differentiable at x 0 if the derivative ′ exists.
Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]
If f is not assumed to be everywhere differentiable, then points at which it fails to be differentiable are also designated critical points. If f is twice differentiable, then conversely, a critical point x of f can be analysed by considering the second derivative of f at x : if it is positive, x is a local minimum; if it is negative, x is a ...
A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing , and the limit = (+) exists. [2] This means that, for every positive real number , there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.
In calculus, the differential represents a change in the linearization of a function.. The total differential is its generalization for functions of multiple variables.; In traditional approaches to calculus, differentials (e.g. dx, dy, dt, etc.) are interpreted as infinitesimals.
The derivative of a real differentiable function is a real function. An antiderivative of a continuous real function is a real function that has the original function as a derivative. For example, the function x ↦ 1 x {\textstyle x\mapsto {\frac {1}{x}}} is continuous, and even differentiable, on the positive real numbers.
This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...
The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R n. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold