enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...

  3. Relativistic angular momentum - Wikipedia

    en.wikipedia.org/wiki/Relativistic_angular_momentum

    For reference and background, two closely related forms of angular momentum are given. In classical mechanics, the orbital angular momentum of a particle with instantaneous three-dimensional position vector x = (x, y, z) and momentum vector p = (p x, p y, p z), is defined as the axial vector = which has three components, that are systematically given by cyclic permutations of Cartesian ...

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The quantity = also appears in the angular momentum of a simple pendulum, which is calculated from the velocity = of the pendulum mass around the pivot, where is the angular velocity of the mass about the pivot point. This angular momentum is given by = = = (() ()) = = ^, using a similar derivation to the previous equation.

  5. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    If R is chosen as the center of mass these equations simplify to =, = = () + = where m is the total mass of all the particles, p is the linear momentum, and L is the angular momentum. The law of conservation of momentum predicts that for any system not subjected to external forces the momentum of the system will remain constant, which means the ...

  6. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    where is the mass of the rigid body; ¯ is the velocity of the center of mass of the rigid body, as viewed by an observer fixed in an inertial frame N; ¯ is the angular momentum of the rigid body about the center of mass, also taken in the inertial frame N; and is the angular velocity of the rigid body R relative to the inertial frame N. [3]

  7. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  8. Specific angular momentum - Wikipedia

    en.wikipedia.org/wiki/Specific_angular_momentum

    In celestial mechanics, the specific relative angular momentum (often denoted or ) of a body is the angular momentum of that body divided by its mass. [1] In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum , divided by the mass of the body in question.

  9. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.