Search results
Results from the WOW.Com Content Network
A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
Symmetric relations contrast with non-symmetric relations, for which this pair-like behavior is not always observed. An example is the love-relation: if Dave loves Sara then it is possible but not necessary that Sara loves Dave. A special case of non-symmetric relations is asymmetric relations, which only go one way.
As discussed above, in the classical theory of ZFC, the axiom of choice enables nonconstructive proofs in which the existence of a type of object is proved without an explicit instance being constructed. In fact, in set theory and topos theory, Diaconescu's theorem shows that the axiom of choice implies the law of excluded middle.
Relations that satisfy certain combinations of the above properties are particularly useful, and thus have received names by their own. Equivalence relation A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order
A relation R is said to be reflexive if a R a holds for every a in the domain of the relation. Every reflexive relation on a nonempty domain has infinite descending chains, because any constant sequence is a descending chain. For example, in the natural numbers with their usual order ≤, we have 1 ≥ 1 ≥ 1 ≥ ....
One motivation for the ZFC axioms is the cumulative hierarchy of sets introduced by John von Neumann. [10] In this viewpoint, the universe of set theory is built up in stages, with one stage for each ordinal number. At stage 0, there are no sets yet.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...