Search results
Results from the WOW.Com Content Network
An element's placement on the periodic table indicates whether its chemical charge is negative or positive. Looking at the table, one can see that the positive charges are on the left side of the table and the negative charges are on the right side of the table. Charges that are positive are called cations. Charges that are negative are called ...
An ion that has more electrons than protons, giving it a net negative charge, is named an anion, and a minus indication "Anion (−)" indicates the negative charge. With a cation it is just the opposite: it has fewer electrons than protons, giving it a net positive charge, hence the indication "Cation (+)".
A chloride ion is a structural component of some proteins; for example, it is present in the amylase enzyme. For these roles, chloride is one of the essential dietary mineral (listed by its element name chlorine). Serum chloride levels are mainly regulated by the kidneys through a variety of transporters that are present along the nephron. [19]
The circumstances under which a compound will have ionic or covalent character can typically be understood using Fajans' rules, which use only charges and the sizes of each ion. According to these rules, compounds with the most ionic character will have large positive ions with a low charge, bonded to a small negative ion with a high charge. [25]
In a compound or ion, the sum of the oxidation states equals the total charge of the compound or ion. Fluorine in compounds has OS = −1; this extends to chlorine and bromine only when not bonded to a lighter halogen, oxygen or nitrogen. Group 1 and group 2 metals in compounds have OS = +1 and +2, respectively.
The electrical charge of the Na + and Cl − ion are assumed to be onefold positive and negative, respectively, z Na = 1 and z Cl = –1. The nearest neighbour distance amounts to half the lattice constant of the cubic unit cell r 0 = a 2 {\displaystyle r_{0}={\tfrac {a}{2}}} and the Madelung constants become
Cl — a chlorine vacancy, with single positive charge. Ca •• i — a calcium interstitial ion, with double positive charge. Cl ′ i — a chlorine anion on an interstitial site, with single negative charge. O ′ ′ i — an oxygen anion on an interstitial site, with double negative charge.
As an example, the molecules of table sugar dissociate in water (sugar is dissolved) but exist as intact neutral entities. Another subtle event is the dissociation of sodium chloride (table salt) into sodium and chlorine ions. Although it may seem as a case of ionization, in reality the ions already exist within the crystal lattice.