Search results
Results from the WOW.Com Content Network
Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide) to organic compounds. These organic compounds are then used to store energy and as structures for other biomolecules .
In botany, a photoassimilate is one of a number of biological compounds formed by assimilation using light-dependent reactions. This term is most commonly used to refer to the energy-storing monosaccharides produced by photosynthesis in the leaves of plants. [1] Only NADPH, ATP and water are made in the "light" reactions.
Assimilation is the process of absorption of vitamins, minerals, and other chemicals from food as part of the nutrition of an organism. In humans, this is always done with a chemical breakdown ( enzymes and acids ) and physical breakdown (oral mastication and stomach churning).
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants, fungi and certain bacteria that can fix nitrogen gas (N 2) depend on the ability to assimilate nitrate or ammonia for their needs. Other organisms, like animals, depend ...
Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. [1] In plants, sulfate is absorbed by the roots and then transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions.
In plants and animals, mineral absorption, also called mineral uptake is the way in which minerals enter the cellular material, typically following the same pathway as water. In plants, the entrance portal for mineral uptake is usually through the roots. Some mineral ions diffuse in-between the cells. In contrast to water, some minerals are ...
For example, in green plants, the action spectrum resembles the absorption spectrum for chlorophylls and carotenoids with absorption peaks in violet-blue and red light. In red algae , the action spectrum is blue-green light, which allows these algae to use the blue end of the spectrum to grow in the deeper waters that filter out the longer ...
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be ...