Search results
Results from the WOW.Com Content Network
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The number e (e = 2.71828...), also known as Euler's number, which occurs widely in mathematical analysis The number i , the imaginary unit such that i 2 = − 1 {\displaystyle i^{2}=-1} The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.
Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives dr / dx = 0 and dθ / dx = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
Equivalence class: given an equivalence relation, [] often denotes the equivalence class of the element x. 3. Integral part : if x is a real number , [ x ] {\displaystyle [x]} often denotes the integral part or truncation of x , that is, the integer obtained by removing all digits after the decimal mark .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An early graphing calculator was designed in 1921 by electrical engineer Edith Clarke. [1] [2] [3] The calculator was used to solve problems with electrical power line transmission. [4] Casio produced the first commercially available graphing calculator in 1985. Sharp produced its first graphing calculator in 1986, with Hewlett Packard ...