enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F 1 {\displaystyle F_{1}} and F 2 {\displaystyle F_{2}} are generally taken to be fixed at − a {\displaystyle -a} and + a {\displaystyle +a} , respectively, on the x ...

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (,,) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces , the ellipsoidal coordinate system is based on confocal quadrics .

  5. Elliptic cylindrical coordinates - Wikipedia

    en.wikipedia.org/wiki/Elliptic_cylindrical...

    The foci of the ellipse and hyperbola lie at x = ±2.0. Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system in the perpendicular -direction. Hence, the coordinate surfaces are prisms of confocal ellipses and hyperbolae.

  6. n-ellipse - Wikipedia

    en.wikipedia.org/wiki/N-ellipse

    In geometry, the n-ellipse is a generalization of the ellipse allowing more than two foci. [1] n-ellipses go by numerous other names, including multifocal ellipse, [2] polyellipse, [3] egglipse, [4] k-ellipse, [5] and Tschirnhaus'sche Eikurve (after Ehrenfried Walther von Tschirnhaus). They were first investigated by James Clerk Maxwell in 1846 ...

  7. Lemniscate of Bernoulli - Wikipedia

    en.wikipedia.org/wiki/Lemniscate_of_Bernoulli

    In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F 1 and F 2, known as foci, at distance 2c from each other as the locus of points P so that PF 1 ·PF 2 = c 2. The curve has a shape similar to the numeral 8 and to the ∞ symbol.

  8. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    In geometry, focuses or foci (/ ˈ f oʊ k aɪ /; sg.: focus) are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola.

  9. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A parabola has only one focus, and can be considered as a limit curve of a set of ellipses (or a set of hyperbolas), where one focus and one vertex are kept fixed, while the second focus is moved to infinity. If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal ...