enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    The number of representations of a natural number n as the sum of four squares of integers is denoted by r 4 (n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

  3. Jacobi's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_four-square_theorem

    In particular, for a prime number p we have the explicit formula r 4 (p) = 8(p + 1). [2] Some values of r 4 (n) occur infinitely often as r 4 (n) = r 4 (2 m n) whenever n is even. The values of r 4 (n) can be arbitrarily large: indeed, r 4 (n) is infinitely often larger than ⁡. [2]

  4. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.

  5. 4 - Wikipedia

    en.wikipedia.org/wiki/4

    Lagrange's four-square theorem states that every positive integer can be written as the sum of at most four squares. [ 5 ] [ 6 ] Four is one of four all-Harshad numbers . Each natural number divisible by 4 is a difference of squares of two natural numbers, i.e. 4 x = y 2 − z 2 {\displaystyle 4x=y^{2}-z^{2}} .

  6. Sum of squares function - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares_function

    The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.

  7. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.

  8. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  9. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250 In mathematics , and specifically in number theory , a divisor function is an arithmetic function related to the divisors of an integer .