Search results
Results from the WOW.Com Content Network
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
Each chromosome map in BacMap is extensively hyperlinked and each chromosome image can be interactively navigated, expanded and rotated using navigation buttons or hyperlinks. All identified genes in a BacMap chromosome map are colored according to coding directions and when sufficiently zoomed-in, gene labels are visible. Each gene label on a ...
BACs can also be utilized to detect genes or large sequences of interest and then used to map them onto the human chromosome using BAC arrays. BACs are preferred for these kind of genetic studies because they accommodate much larger sequences without the risk of rearrangement, and are therefore more stable than other types of cloning vectors.
Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria and archaea. Some fungi and protozoa are also subjects used to study in this field.
Scientists seeking new ways to fight drug-resistant superbugs have mapped the genomes of more than 3,000 bacteria, including samples of a bug taken from Alexander Fleming's nose and a dysentery ...
An additional method in comparative genomics is genetic mapping. In genetic mapping, visualizing synteny is one way to see the preserved order of genes on chromosomes. It is usually used for chromosomes of related species, both of which result from a common ancestor. [ 58 ]
Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction.Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart.
Optical mapping [1] is a technique for constructing ordered, genome-wide, high-resolution restriction maps from single, stained molecules of DNA, called "optical maps". By mapping the location of restriction enzyme sites along the unknown DNA of an organism, the spectrum of resulting DNA fragments collectively serves as a unique "fingerprint" or "barcode" for that sequence.