enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  3. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Exponential distribution; ... Proof follows from the linearity and the non-negativity property for = ... (α,β) distribution with expected value α/(α+β).

  4. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    A number of special cases are given here. In the simplest case, where the random variable X takes on countably many values (so that its distribution is discrete), the proof is particularly simple, and holds without modification if X is a discrete random vector or even a discrete random element.

  5. Exponential family - Wikipedia

    en.wikipedia.org/wiki/Exponential_family

    The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...

  6. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    (If the expected values change during the series, then we can simply apply the law to the average deviation from the respective expected values. The law then states that this converges in probability to zero.) In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15]

  7. Memorylessness - Wikipedia

    en.wikipedia.org/wiki/Memorylessness

    The only memoryless continuous probability distribution is the exponential distribution, shown in the following proof: [9] First, define S ( t ) = Pr ( X > t ) {\displaystyle S(t)=\Pr(X>t)} , also known as the distribution's survival function .

  8. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y , the distribution of the random variable Z that is formed as the product Z = X Y {\displaystyle Z=XY} is a product distribution .

  9. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then