Search results
Results from the WOW.Com Content Network
This means that the generally inferior flow of a reverse-flow head is less of a disadvantage. In the early days of turbo charging a reverse-flow head allowed the compressor outlet of a turbocharger to blow directly into the inlet manifold with either a blow-through or draw-through carburettor and no intercooler. This allowed the use of shorter ...
Whittle designed the centrifugal compressor to develop about 4:1 pressure ratio when, as far as he was aware, the best previously demonstrated performance in a single stage was about 2.5:1. He specified a double sided impeller to give his required air flow from a smaller diameter impeller than could be obtained from a single-sided one. [ 2 ]
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
This includes pressure inlet and outlet conditions mainly. Typical examples that utilize this boundary condition include buoyancy driven flows, internal flows with multiple outlets, free surface flows and external flows around objects. [1] An example is flow outlet into atmosphere where pressure is atmospheric.
The engine's design is unusual; the core flow path is reversed twice. Aft of the fan, the axial compressor has five stages, after which the gas path progresses to the aft end of the engine. There, it is reversed to flow through a centrifugal compressor stage, the combustors and then the turbine stages.
Reverse flow may refer to: In engine technology a reverse flow cylinder head is one that locates the intake and exhaust ports on the same side of the engine. Reverse logistics, i.e. goods/waste flowing in the distribution network having consumers as point of origin; Reverse electron flow is a mechanism in microbial metabolism
H, pressure drop across test piece in pascals measured by the test pressure manometer d , density of air in kilograms per cubic meter ( 1.20 kilograms per cubic meter at standard conditions ) This represents the highest speed of the air in the flow path of a normally shaped port, at or near the section of minimum area ( through the valve seat ...
The flow resistance is defined, analogously to Ohm's law for electrical resistance, [2] as the ratio of applied pressure drop and resulting flow rate: R = Δ p Q {\displaystyle R={\frac {\Delta p}{Q}}} where Δ p {\displaystyle \Delta p} is the applied pressure difference between two ends of the conduit, and Q {\displaystyle Q} the flow rate.