Search results
Results from the WOW.Com Content Network
Class 6 Packing Groups and Hazard Zones The packing group of Division 6.1 materials shall be as assigned in Column 5 of the 49CFR 172.101 Table. When the 49CFR 172.101 Table provides more than one packing group or hazard zone for a hazardous material, the packing group and hazard zone shall be determined by applying the following criteria: 1.
Class 5.2: Organic Peroxide Oxidizing Agent 5.2 Organic peroxides, either in liquid or solid form ( benzoyl peroxides , cumene hydroperoxide ). Class 6: Toxic and Infectious Substances
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry: The angle sum of a triangle is less than 180°. The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries:
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Broken down, 3 6; 3 6 (both of different transitivity class), or (3 6) 2, tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided polygons (triangles). With a final vertex 3 4.6, 4 more contiguous equilateral triangles and a single regular hexagon.