Search results
Results from the WOW.Com Content Network
The chiral symmetry transformation can be divided into a component that treats the left-handed and the right-handed parts equally, known as vector symmetry, and a component that actually treats them differently, known as axial symmetry. [2] (cf. Current algebra.) A scalar field model encoding chiral symmetry and its breaking is the chiral model.
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry ...
Dextrorotation and laevorotation (also spelled levorotation) [1] [2] in chemistry and physics are the optical rotation of plane-polarized light.From the point of view of the observer, dextrorotation refers to clockwise or right-handed rotation, and laevorotation refers to counterclockwise or left-handed rotation.
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.
The set of all proper rotations (about any angle) through any axis of a sphere form a Lie group called the special orthogonal group SO(3). (The '3' refers to the three-dimensional space of an ordinary sphere.) Thus, the symmetry group of the sphere with proper rotations is SO(3). Any rotation preserves distances on the surface of the ball.
Under rotations, classical geometrical objects can be classified into scalars, vectors, and tensors of higher rank. In classical physics, physical configurations need to transform under representations of every symmetry group.