Search results
Results from the WOW.Com Content Network
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209 Bi undergoes alpha decay with a half-life of 20.1 exayears (2.01×10 19, or 20.1 quintillion years), [3] [4] over 10 9 times longer than the estimated age of the universe. [5]
This is the longest half-life directly measured for any unstable isotope; [4] only the half-life of tellurium-128 is longer. [ citation needed ] Of the chemical elements, only 1 element ( tin ) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable ...
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode .
Slightly radioactive elements: the most stable isotope is very long-lived, with a half-life of over two million years. Radioactive elements: the most stable isotope has half-life between 800 and 34,000 years.
Considering all decay modes, various models indicate a shift of the center of the island (i.e., the longest-living nuclide) from 298 Fl to a lower atomic number, and competition between alpha decay and spontaneous fission in these nuclides; [83] these include 100-year half-lives for 291 Cn and 293 Cn, [55] [78] a 1000-year half-life for 296 Cn ...
Six isotopes of flerovium are known, ranging in mass number between 284 and 289; the most stable of these, 289 Fl, has a half-life of ~2.1 seconds, but the unconfirmed 290 Fl may have a longer half-life of 19 seconds, which would be one of the longest half-lives of any nuclide in these farthest reaches of the periodic table.
It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not been prepared yet. [5] A total of 20 isotopes are known, with 257 Fm being the longest-lived with a half-life of 100.5 days.