Search results
Results from the WOW.Com Content Network
A board foot is a United States and Canadian unit of approximate volume, used for lumber. It is equivalent to 1 inch × 1 foot × 1 foot (144 cu in or 2,360 cm 3). It is also found in the unit of density pounds per board foot. In Australia and New Zealand the terms super foot or superficial foot were formerly used for this unit. The exact ...
The area of a shape can be measured by comparing the shape to squares of a fixed size. [2] In the International System of Units (SI), the standard unit of area is the square metre (written as m 2), which is the area of a square whose sides are one metre long. [3] A shape with an area of three square metres would have the same area as three such ...
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
The metes and bounds system was used to describe a town of a generally rectangular shape, 4 to 6 miles (6.4 to 9.7 km) on a side. Within this boundary, a map or plat was maintained that showed all the individual lots or properties. There are some difficulties with this system: Irregular shapes for properties make for much more complex descriptions.
However, real-life particles are likely to have irregular shapes and surface irregularities, and their size cannot be fully characterized by a single parameter. The concept of equivalent spherical diameter has been introduced in the field of particle size analysis to enable the representation of the particle size distribution in a simplified ...
Packing circles in a square - closely related to spreading points in a unit square with the objective of finding the greatest minimal separation, d n, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2 / d n {\displaystyle L=2+2/d_{n}} .
Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.
Alternatively, the shape's area could be compared to that of its bounding circle, [1] [2] its convex hull, [1] [3] or its minimum bounding box. [ 3 ] Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [ 3 ] its bounding circle, [ 1 ] or a circle having the same area.