Search results
Results from the WOW.Com Content Network
Peritubular capillaries surround the cortical parts of the proximal and distal tubules, while the vasa recta go into the medulla to approach the loop of Henle. [1] [2] About one-fifth of the blood plasma is filtered into Bowman's capsule as the blood passes through the glomerular capillaries; four-fifths continues into the peritubular capillaries.
It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 ...
The juxtaglomerular apparatus is part of the kidney nephron, next to the glomerulus. It is found between afferent arteriole and the thick ascending limb of the loop of Henle (distal straight tubule) of the same nephron. This location is critical to its function in regulating renal blood flow and glomerular filtration rate. [2] [3]
The proximal tubule efficiently regulates the pH of the filtrate by secreting hydrogen ions (acid) into the tubule and reabsorbing approximately 80% of the filtered bicarbonate. [6] Fluid in the filtrate entering the proximal convoluted tubule is reabsorbed into the peritubular capillaries.
They enter the medulla, and surround the loop of Henle. Whereas the peritubular capillaries surround the cortical parts of the tubules, the vasa recta go into the medulla and are closer to the loop of Henle, [1] [2] and leave to ascend to the cortex. [3] [4]
This illustration demonstrates the normal kidney physiology, including the Proximal Convoluted Tubule (PCT), Loop of Henle, and Distal Convoluted Tubule (DCT). It also includes illustrations showing where some types of diuretics act, and what they do. Renal physiology (Latin renes, "kidneys") is the study of the physiology of the kidney.
As flow increases, the ability of the loop to maintain its osmolar gradient is reduced. The vasa recta (capillary loops) also have a slow flow as well. Increases in vasa recta flow wash away metabolites and cause the medulla to lose osmolarity as well. Increases in flow will disrupt the kidney's ability to form concentrated urine. [3]
The presence of aquaporin-1 channels in the thin segment facilitates high water permeability, crucial for water reabsorption as part of the kidney's countercurrent exchange mechanism. [ 4 ] [ 5 ] They can be distinguished from the vasa recta by the absence of blood, and they can be distinguished from the thick ascending limb by the thickness of ...