Search results
Results from the WOW.Com Content Network
Monosaccharides are the building blocks of disaccharides (such as sucrose, lactose and maltose) and polysaccharides (such as cellulose and starch). The table sugar used in everyday vernacular is itself a disaccharide sucrose comprising one molecule of each of the two monosaccharides D-glucose and D-fructose. [2]
The reaction turns the =O group into a hydroxyl, and the hydroxyl into an ether bridge (−O−) between the two carbon atoms, thus creating a ring with one oxygen atom and four or five carbons. If the cycle has five carbon atoms (six atoms in total), the closed form is called a pyranose, after the cyclic ether tetrahydropyran, that has the ...
Carbohydrates can generally be classified into one of two groups, monosacharides, and complex carbohydrates.Monosacharides (also called "simple sugars") are the simplest single units of any carbohydrate; the most common monosaccharides are five and six carbon compounds such as glucose, fructose, and galactose. [2]
It consists of two types of molecules: the linear and helical amylose and the branched amylopectin. Depending on the plant, starch generally contains 20 to 25% amylose and 75 to 80% amylopectin by weight. [4] Glycogen, the energy reserve of animals, is a more highly branched version of amylopectin.
The carbohydrate part of the molecule is called glycone, the -O- bridge is the glycosisdic oxygen, and the attached group is the aglycone. Glycosides are named by giving the aglyconic alcohol HOR, followed by the saccharide name with the '-e' ending replaced by '-ide'; as in [[phenol D -glucopyranoside]].
Glycogen is analogous to starch, a glucose polymer in plants, and is sometimes referred to as animal starch, [16] having a similar structure to amylopectin but more extensively branched and compact than starch. Glycogen is a polymer of α(1→4) glycosidic bonds linked with α(1→6)-linked branches.
Disaccharides are formed when two monosaccharides, or two single simple sugars, form a bond with removal of water. They can be hydrolyzed to yield their saccharin building blocks by boiling with dilute acid or reacting them with appropriate enzymes. [6] Examples of disaccharides include sucrose, maltose, and lactose.
Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt . [ 4 ]