enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    The fundamental theorem of finite abelian groups states that every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order; it is also known as the basis theorem for finite abelian groups. Moreover, automorphism groups of cyclic groups are examples of abelian groups. [13]

  3. Free abelian group - Wikipedia

    en.wikipedia.org/wiki/Free_abelian_group

    Every subgroup of a free abelian group is itself free abelian; this fact allows a general abelian group to be understood as a quotient of a free abelian group by "relations", or as a cokernel of an injective homomorphism between free abelian groups. The only free abelian groups that are free groups are the trivial group and the infinite cyclic ...

  4. Elementary abelian group - Wikipedia

    en.wikipedia.org/wiki/Elementary_abelian_group

    Every elementary abelian p-group is a vector space over the prime field with p elements, and conversely every such vector space is an elementary abelian group. By the classification of finitely generated abelian groups, or by the fact that every vector space has a basis, every finite elementary abelian group must be of the form (Z/pZ) n for n a ...

  5. Torsion subgroup - Wikipedia

    en.wikipedia.org/wiki/Torsion_subgroup

    An abelian group A is torsion-free if and only if it is flat as a Z-module, which means that whenever C is a subgroup of some abelian group B, then the natural map from the tensor product C ⊗ A to B ⊗ A is injective. Tensoring an abelian group A with Q (or any divisible group) kills torsion. That is, if T is a torsion group then T ⊗ Q = 0.

  6. Category of abelian groups - Wikipedia

    en.wikipedia.org/wiki/Category_of_abelian_groups

    Since the group of integers Z serves as a generator, the category Ab is therefore a Grothendieck category; indeed it is the prototypical example of a Grothendieck category. An object in Ab is injective if and only if it is a divisible group; it is projective if and only if it is a free abelian group.

  7. p-group - Wikipedia

    en.wikipedia.org/wiki/P-group

    p-groups of the same order are not necessarily isomorphic; for example, the cyclic group C 4 and the Klein four-group V 4 are both 2-groups of order 4, but they are not isomorphic. Nor need a p-group be abelian; the dihedral group Dih 4 of order 8 is a non-abelian 2-group. However, every group of order p 2 is abelian. [note 1]

  8. Grothendieck group - Wikipedia

    en.wikipedia.org/wiki/Grothendieck_group

    In mathematics, the Grothendieck group, or group of differences, [1] of a commutative monoid M is a certain abelian group.This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M.

  9. Locally compact abelian group - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_abelian_group

    A topological group is called locally compact if the underlying topological space is locally compact and Hausdorff; the topological group is called abelian if the underlying group is abelian. Examples of locally compact abelian groups include: for n a positive integer, with vector addition as group operation.